ENGINEERING CHANGE ORDER				ECO No.	ECO No. COS-082			
Center for Astrophysics & Sp	Date	14 January 2003						
University of Colorado, Boul	Sheet	1	of _	2				
		Revisio	n Letter	Special Distr	ibution			
Drawing/Document Title	Drwg/Doc No.	Current	New					
OP-01	COS-01-0001	19	20					
				Stop Production Now				
				☐ Yes				
				☐ No	1			

Description of Change:

1. Page 37 (Rev. 19), Sec. 2.1.3: Replace Table 2.1-1 with the following table plus table notes. Rationale: Additional G130M and G160M grating settings are needed to allow greater flexibility in avoiding poor regions near the edges of the MCP active areas. The second G140L setting is slightly altered to allow bluer wavelengths onto segment A; however, the FUV detector must be operated in the HVNOMA mode (single segment operations) for this wavelength setting because the zero-order image will move onto the active area of segment B. The "Central Wavelength" is still the first wavelength that appears on the "red" segment (segment A), but the first useful wavelengths will be roughly 100-200 pixels inside of the edges. The offsets between the G130M/G160M wavelength settings are designed to be in multiples of 4 OSM1 steps, and the offset between the G140L settings is designed to be 6 OSM1 steps.

Optic	Central λ*	Observed
	(Å)	Wavelengths (Å)
G130M	1291	1132-1274,1291-1433
	1300	1141-1283,1300-1442
	1309	1150-1292,1309-1451
	1318	1159-1301,1318-1460
	1327	1168-1310,1327-1469

Reason for Change:		Disposition/Effectivity					
Updates to COS operations in OP-01.		To Co	mply With ECO				
		Use A	s Is				
		Rewor	rk To ECO				
		Scrap	And Rebuild				
		Recor	d change Only				
		Other	(See Above)				
Prepared By:	Jon Morse	Date	14 Jan 2003	CCB Re	equired	□Appr	oved
Approved By:		Date		□Yes	\square No	□NotA	pproved
Approved By:		Date				Immedia	ate
Approved By:		Date		□Class I In		Incorpor	ration
Approved By:		Date		Class	Ш	□Yes	\square No
Approved By:		Date		Comp	letion		
Project Mgr:		Date		Date			
					•		

ENGINEERING CHANGE ORDER					ECO No.		COS-082		
Center for Astrophysics & Space Astronomy					Date	14 January 2003			
University of Colorado, Boulder			Sheet	2	of	2			
Revision Letter			Special Distribution						
Drawing/Docu	ument Title	Drwg/Doc No.	Current	New					
OP-01		COS-01-0001	19	20					
					Stop Product	I			
						□ Ye	es		
						□ N	0		
	G160M	1577		1382-155	6,1577-1752				
		1589		1394-156	8,1589-1764				
		1600		1405-157	9,1600-1775				
		1611		1416-159	0,1611-1786				
		1623		1428-160	2,1623-1798				
	G140L	1105**		<300-970),1105-2253				
		1230			5,1230-2378				
	NCM1	NUV Channel			√/A				
	NCM1-FF***	NUV Flat-Field		1	V/A				

^{*} The "Central Wavelength" designated for the FUV grating modes is actually the first wavelength that falls onto the long wavelength segment of the FUV detector (segment A), under the premise that the specified wavelength should be one that can actually be observed rather than one that falls in the middle of the "detector gap." The multiple wavelength settings for the G130M and G160M gratings are designed to be offset by multiples of 4 OSM1 rotary steps, and the G140L settings are designed to be offset by 6 OSM1 rotary steps. Wavelength settings in bold-face are the nominal settings that are expected to be utilized most. The NCM1 positions are those that yield the best alignment and focus for the NUV channel optical path.

** The G140L "1105" setting moves the zero-order image onto segment B of the FUV detector, while the useful first-order spectrum falls onto segment A. This setting should be only used in "single-segment operation," with HVNOMA and segment B high-voltage set to low.

*** NCM1-FF is the OSM1 position (rotation and focus) for NCM1 used to perform the NUV flat-field exposures. Due to the offset in the dispersion direction of the flat-field aperture (FCA) from the science apertures (PSA or BOA), much of the light in the flat-field calibration beam would miss the NUV grating on OSM2 with NCM1 placed in its normal position for NUV science operations. The NCM1-FF position is 5 rotation steps reverse of the nominal NCM1 (NUV Channel) science position, which restores the alignment to the NUV gratings and maximizes the throughput.

2. Page 39 (Rev. 19), Sec. 2.1.4: In Table 2.1-2, change the G230L wavelength settings to the following (i.e., add the "2950" wavelength setting to the table).

Rationale: The "3000" wavelength setting cuts the Mg II 2796,2804 doublet in half. The new "2950" setting will allow proposers to observe the Mg II 2800 and Mg I 2853 features in one exposure.

Optic	Central λ*	Observed
	(Å)	Wavelengths (Å)
G230L	2635	2435-2834
	2950	1650-2050,2750-3150
	3000	1700-2100,2800-3200
	3360	2059-2458

ENGINEERING CHANGE ORDER				ECO No.	COS-082		
Center for Astrophysics & Spa-	Date	14 January 2003					
University of Colorado, Boulde	Sheet	3	of	2			
		Revisio	n Letter	Special Distr	ibution		
Drawing/Document Title	Drwg/Doc No.	Current	New				
OP-01	COS-01-0001	19	20				
				Stop Production Now			
				☐ Yes			
					☐ No		

3. Page 12 (Rev. 19), Sec. 1.3.3: In Table 1.3-2, add a row in the table for the "2950 Å" wavelength setting of G230L in between the "2635 Å" and "3000 Å" rows, and replace the table Note with the accompanying text.

Central	Stripe A	Stripe B	Stripe C
Wavelength			(2 nd order)
Of Stripe B			
2950 Å	1650-2050 Å	2750-3150 Å	(1900-2100 Å)

Note: Wavelengths in bold type are the nominal first-order wavelengths of interest. The "2635", "3000", and "3360" wavelength settings together provide a contiguous first-order spectrum covering 1700-3200Å.