

COS **Monthly Status Review September 17, 2002** Ball

Cosmic Origins Spectrograph Hubble Space Telescope Page 1 September 17, 2002

COS

Monthly Status Review

Agenda

Progress Summary Since Last Monthly COS I&T Preparation & Support GN2 Alignment Update UCB FUV Detector Technical Status UCB FUV Detector Programmatic Status Software/Ops Schedules Descope Report Upcoming Events/Activities CU Issues & Resolution Plan **STScI** Presentation **BATC** Presentation Financial Splinter

- J. Andrews
- J. Andrews
- J. Green
- O. Siegmund
- J. Andrews
- K. Sembach
- R. Higgins
- GSFC/Ball/CU

Cosmic Origins Spectrograph Hubble Space Telescope Page 2 September 17, 2002

Progress Summary Since Last Monthly

- Supported FUV-01 integration at Ball.
- Continued ground calibration planning.
- Commenced FUV-02 final assy. in preparation for upcoming qualification test program.
- Supported NUV/FUV GN2 alignment checks at Ball.

COS I&T Preparation and Support

- CU and UCB supported the integration and installation of FUV-01 into COS.
- CU is supporting the NUV/FUV GN2 alignment activities that are now ongoing.
- CU has agreed to write the COS TV/TB test procedure.

Nitrogen Testing of COS

- Under N₂ purge and with FUV detector door closed, end-to-end testing of COS with RASCAL was performed.
- RASCAL spectra in NUV channels indicated residual aberrations in endto-end system and input misalignments.
- Cal-lamp spectra in NUV showed small, in-focus spots.
- Follow up measurement of RASCAL indicated systemic misalignments of several optics and of the RASCAL/COS interface.
- Kevin Redman is realigning RASCAL tomorrow.
- Insufficient testing of FUV system to date to make any meaningful conclusions.

Cosmic Origins Spectrograph Hubble Space Telescope Page 5 September 17, 2002

Overview of FUV Detector Assemblies

- **DEB** (**D**etector **E**lectronics **B**ox)
 - DCE (Detector Control Electronics))
 - TDCs (Time-to-Digital Converters)
 - HVPS (High Voltage Power Supply)
 - LVPC(Low Voltage Power Converter)
- **DVA (Detector Vacuum Assembly)**
 - VHA (Vacuum Housing Assembly)
 - Detector Door Mechanism
 - Ion Pump Assembly
 - DBA (Detector Backplate Assembly)
 - Amplifiers
 - HVFM (High Voltage Filter Module)

Detector Electronics Box (DEB) DCS Coordinate Axes (337) Detector Vacuum Assembly (DVA)

DEB Coordinate

Axes

Page 6 September 17, 2002

Cosmic Origins Spectrograph Hubble Space Telescope

FUV Detector Subsystem Block Diagram

 UCB is under contract to deliver 1 flight FUV detector subsystem (FUV-01) and 1 flightspare detector subsystem (FUV-02).

Cosmic Origins Spectrograph Hubble Space Telescope Page 7 September 17, 2002

FUV Detector Overview

- FUV-01 was delivered to Ball on Wednesday, July 31st.
- FUV-01 was successfully mated to and tested with the MEB.
- FUV-01 DVA was successfully mounted into the optics bench.
- FUV-02 is in assembly now at UCB and will undergo environmental testing in October.

FUV Detector Verification Testing Summary

Unit	Functional	Performance	EMI/EMC	Sine Burst	Random	Thermal-	Contamination
	Testing	Testing			Vibe	Vac	Certification
FUV-01 DVA	С	С	@SS	A - C	A - C	@SS	@SS
FUV-01 DEB	С	С	@SS	Q - C	Q - C	@SS	@SS
FUV-01 SS	С	С	С	@Comp	@Comp	8-cycles	С
FUV-02 DVA	Р	Р	N/R	Q - P	Q - P	@SS	@SS
FUV-02 DEB	С	С	N/R	A - P	A - P	@SS	@SS
FUV-02 SS	Р	Р	N/R	@Comp	@Comp	8-cycles	Р
DVA Surrogate (1)	С	N/R	N/R	С	С	N/R	N/R
DVA Surrogate (2)	С	N/R	N/R	С	С	С	N/R

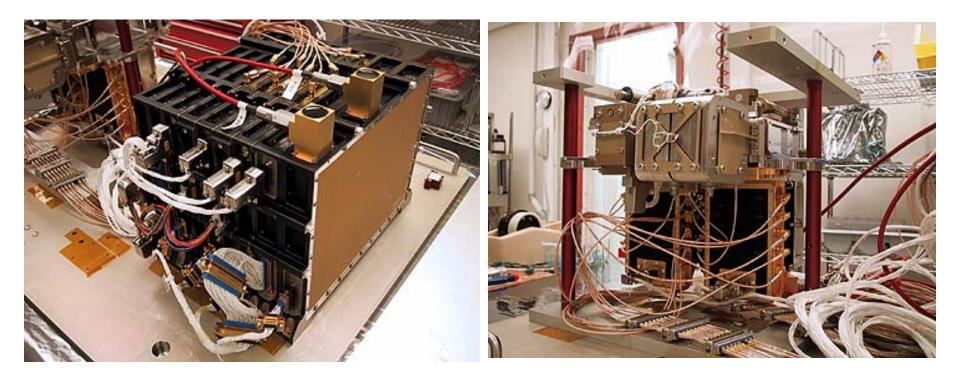
C Complete

@SS At Subsystem

- A Acceptance Levels
- Q Qualification Levels
- N/R Not Required
- P Planned
- (1) Old Door Mechanism
- (2) New Door Mechanism

DVA-02 to see qual-level vibe at LMMS on Oct-02
FUV-02 to see 8 cycle T/V at CU in Oct/Nov-02

Cosmic Origins Spectrograph Hubble Space Telescope Page 9 September 17, 2002

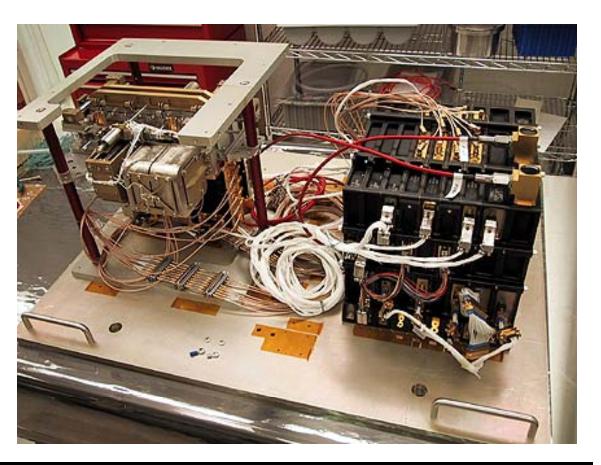


COS FUV Detector Systems

• Detector DEB

• Detector Head

Cosmic Origins Spectrograph Hubble Space Telescope Page 10 September 17, 2002


Flight FUV01 Detector System

Completed thermal vacuum at CU, delivered to Ball 7/31.

Post delivery functional tests nominal.

Cleanliness certification at Ball completed successfully.

Alignment tests in progress.

Cosmic Origins Spectrograph Hubble Space Telescope Page 11 September 17, 2002

Retrofit and Commissioning steps for FUV01

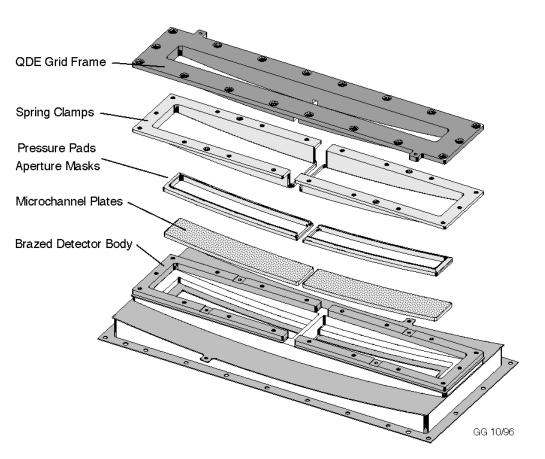
- •Replace broken FUV01 grid frame DONE
- •Acceptance vibration test (Z axis) DONE
- •Full set of detector functional tests DONE
- •Check of detector QE performance DONE
- •Re-scrub detector and functional test DONE
- •Check of detector QE performance DONE
- •Ship to CU --- Thermal vacuum test Arrived 7/19, begun cycles 7/23
- •Thermal vacuum finished successfully 7/29, including:
- •Door ops with 4 HOP firings, hot & cold soaks, plus 2 temp cycles
- •Cleanliness certification at CU
- •Delivered to Ball 7/31, functional test completed OK
- •Repeated cleanliness certification at Ball OK
- •Alignment tests in progress at Ball

Cosmic Origins Spectrograph Hubble Space Telescope Page 12 September 17, 2002

UCB FUV02, Flight Backup Detector, Status

- **DEB -** All boards have been cleaned, coated, staked, and vacuum baked.
- Harnesses Cleaned and vacuum baked/certified.
- Vacuum Housing Assembly (VHA)
 - Previously completed alignment tests at Ball.
 - New door assembly completed and tested at UCB during the last month
 - Ion grid installed and VHA vacuum verified with ETU DBA
- Brazed Body Assembly and Detector Backplate Assembly.
 - BBA opened and MCP's cleaned prior to new cathode deposition.
 - MCP's re-installed and functionally tested successfully
 - Installed new QE grid and magnetic shield, functionally tested successfully
 - DBA installed into VHA and successfully pumped with ion pumps
 - Ready for functional test and MCP scrub
- Test vacuum tank
 - has been fully commissioned to support FUV02

Cosmic Origins Spectrograph Hubble Space Telescope Page 13 September 17, 2002



Detector Brazed Body Assembly Design

<u>FUV01 QE Grid</u> Mounts to top of detector Frame is PEEK insulator Grids are electroformed Ni One grid on each segment Used to enhance QE by 30% -1500v bias to MCP Bias can be turned off Ramps with MCP HV

Original Buckbee-Mears mesh, several wires broke in final test. Can be removed or installed without disturbing MCP's Access by removing DBA & magnetic shield from VHA

Cosmic Origins Spectrograph Hubble Space Telescope Page 14 September 17, 2002

Flight and Flight Backup Grid Installation

Flight Grids on 30% Glass Filled PEEK Frames

Grid lifetest program was successful in verifying the robustness of the new grids (Included three thermal cycle tests and three vibrations)

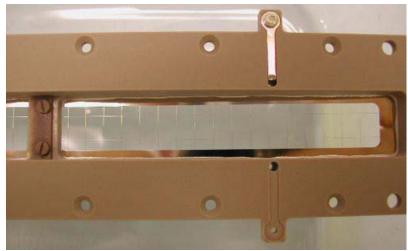
Made 2 flight grid assemblies on 30% glass filled PEEK frames, Stork-Veco mesh Epoxy cured at room temp, with thorough post cure grid microscopic examination **Both have** undergone :-

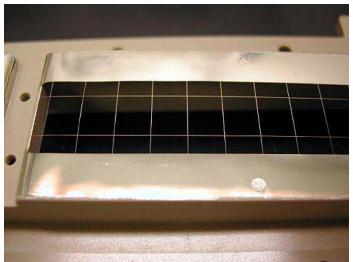
Field emission tested on a detector successfully Completed thermal cycles, -25°C to +50°C, Inspection and field emission test Vibration test Inspection and field emission test

First has been installed on FUV01 and second has been installed on FUV02

Cosmic Origins Spectrograph Hubble Space Telescope Page 15 September 17, 2002

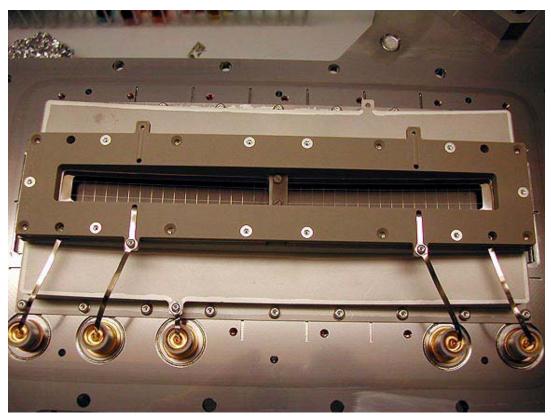
COS


Monthly Status Review



Flight Grid Solution

Stork-Veco mesh on 30% glass filled PEEK frame



Cosmic Origins Spectrograph Hubble Space Telescope Page 16 September 17, 2002

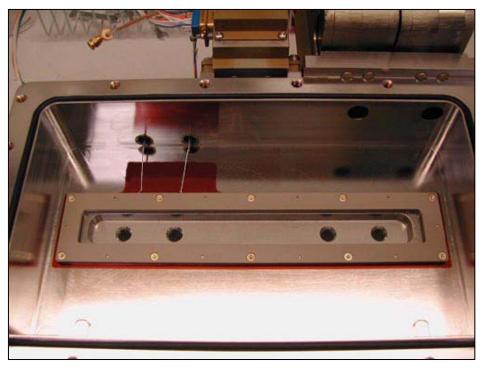
FUV02 detector with QE grid installed

Background is low --- <10 events sec each side

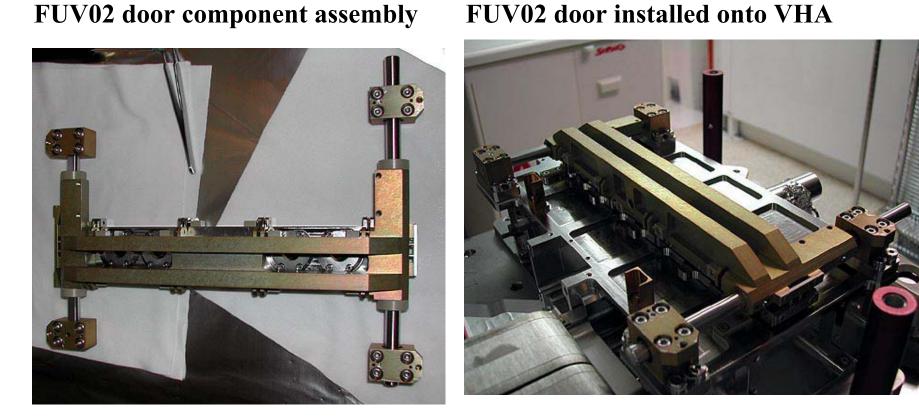
Pulse heights/ gain good Gain map OK

Flat field similar to FUV01

Cosmic Origins Spectrograph Hubble Space Telescope Page 17 September 17, 2002

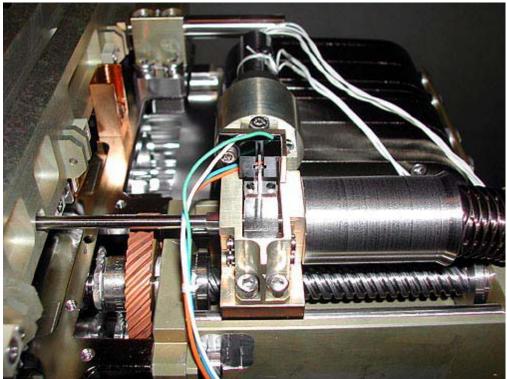


FUV02 VHA with ion pumps


FUV02 VHA internal layout

Cosmic Origins Spectrograph Hubble Space Telescope Page 18 September 17, 2002

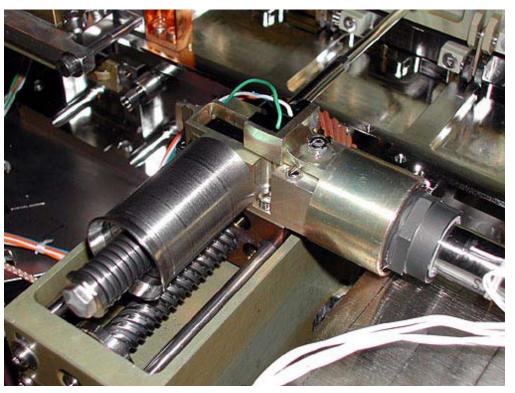
Cosmic Origins Spectrograph Hubble Space Telescope Page 19 September 17, 2002



HOP assembly

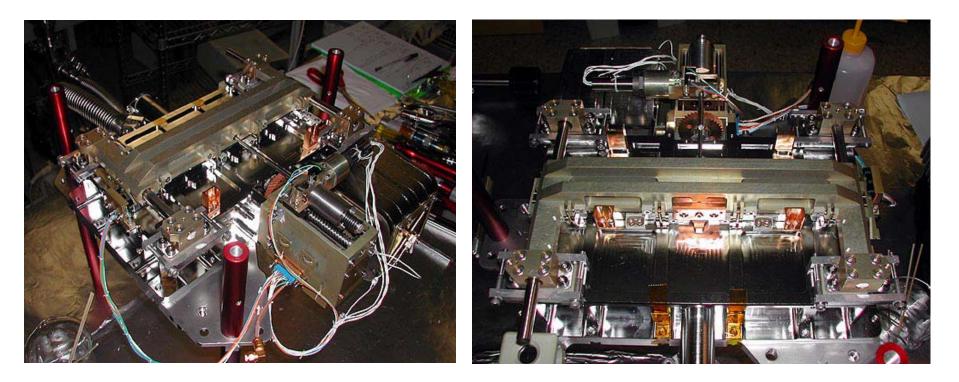
HOP assembly attached to motor and door

Cosmic Origins Spectrograph Hubble Space Telescope Page 20 September 17, 2002



Motor drive assembly

Motor assembly attached to HOP and door



Cosmic Origins Spectrograph Hubble Space Telescope Page 21 September 17, 2002

FUV02 VHA completed assembly

Cosmic Origins Spectrograph Hubble Space Telescope Page 22 September 17, 2002

UCB FUV02, Flight Backup Detector, Next Actions

- Install into test chamber and perform functional test.
- Perform deep MCP scrub.
- Post scrub functional test.
- Deposit photocathodes (CsI on both sides)
- Re-install in test chamber, perform QDE test
- Mini scrub
- QDE calibration and full functional test, including flat field
- Vibration test and post vibration functional
- Pack and ship to CU
- Thermal vacuum test at CU
- Cleanliness certification and delivery to Ball

FUV-02 Detector Schedule

					2002	2003
ID	Task Name	% Complete	Duration		JFMAMJJASON	DJFMA
1	QUALIFICATION OF FUV#2	60%	182 days			
2	Prep FUV#2 door assembly	100%	12 wks		4/10 6/19	
3	Qualify FUV#2 grid (parallel task)	100%	6 wks		5/16 📻 6/21	
4	Flight door motor and actuator parts assembly (Jason/Chris)	100%	18 days		8/5 🔜 8/26	
5	Build-up and match drilling of BBA#2 plus flat field test (JVV/Os)	100%	12 days		8/5 📕 8/19	
6	Door motor and actuator match drilling assembly & test	100%	2 wks		8/27 🗧 9/5	
7	Convert BBA#2 to Flight Quality DVA#2	100%	7 days		9/6 🚦 9/13	
8	Install in QE chamber then door & system functional tests	100%	2 edays		9/13 9/15	
9	Bare Maxi-Scrub of FUV#2 plates in QE chamber	0%	10 edays	1	9/16 9/26	
10	Remove FUV#2 and deposit photocathode on MCPs	0%	3 edays		9/27 9/30	
11	Re-assemble DVA#2, re-install in vac chamber	0%	2 edays		10/1 10/3	
12	Post dep Q.E. check	0%	1 day		10/4 10/4	
13	Reconfigure vacuum chamber and Mini-scrub of plates	0%	3 days		10/7 10/9	
14	Reconfigure vac chamber & Measure FUV#2 Q.E.	0%	3 days		10/10 10/1	4
15	Pre-vibration functional tests	0%	1 day		10/15 10/ ⁻	15
16	Qual Vibration testing of DEB#2 and DVA#2 at Lockheed with BATC flexures	0%	3 days		10/16 10/	18
17	Post-vibration functional check	0%	2 days		10/21 10/	22
18	Final System Functional testing	0%	2 days		10/23 10/	24
19	Pack detector for shipment	0%	1 day		10/25 10	/25
20	Ship FUV02 detector system to Uco	0%	1 day		10 26 10	/27
21	Install detector system into UCo T-V chamber	0%	2 days	1	10/28 10	/29
22	Pre-pump down functional testing	0%	1 day		10/30 10	/30
23	System T-V tests	0%	10 edays		10/31 🗧 1	1/10
24	System cleanliness certification	0%	1 day		11/11 1	1/11
25	Remove flight system and pack	0%	1 day		11/12	11/12
26	Flight FUV#2 system ready for BATC	0%	0 days			11/12

Page 24 September 17, 2002

Software/Ops Update

- FUV detector table-top electrical integration successfully completed.
- Brownsberger and Beland continue their presence at Ball supporting the SW/OPS efforts.
- CEDAR has been stable for some months and is supporting GN2 alignments at Ball.

COS Schedule for CU/UCB

Task	Status
CALCOS Software Development	On-going. Completion by \sim TV-2 mos
Cal/FF SS Retest	10/02
Complete FUV-02	Deliver 11/02
Complete COS TV/TB Plan	12/02

Cosmic Origins Spectrograph Hubble Space Telescope Page 26 September 17, 2002

COS Descope Issues (No Changes Since Last MSR)

- The COS IDT has been asked to develop and track a descope plan which, if implemented, can be used to control future cost growth and/or schedule difficulties.
- At the beginning of the COS development effort, late CY97 and early CY98, we prepared and presented several descope options. At that time we descoped the following:
 - Reduced the MEB SRAM buffer memory
 - Fewer NUV/FVU optics/grating spares
 - No parallel technology path for NUV gratings
 - Reduced I&T/calibration effort
 - Baselined environmentals at GSFC

Cosmic Origins Spectrograph Hubble Space Telescope Page 27 September 17, 2002

COS Descope Tracking List

Candidate De-Scope	Trigger Date	Resource Saved*	Impacts
Eliminate FUV Detector detailed resolution tests	Implemented	2 weeks	Knowledge of detector
Eliminate FUV Detector detailed QE tests	Implemented	2 weeks	Knowledge of detector
Eliminate FUV Detector deep FF tests	Implemented	3 weeks	Knowledge of detector
Make DCE Op Code non-uploadable	Too late		Higher risk, Ops
Early transition of FSW to Code 582	Too late		Ops
Remove Redundant Cal/FF Elements	Too late		Higher risk, Ops
Remove/reduce memory	Too late		Ops
Remove NUV gratings from OSM2	Too late		Degraded science
Drop NUV channel	Too late		Degraded science
Remove NCM3 optics	Too late		Degraded science, Ops
Eliminate Aperture Mechanism	Too late		Ops, Obs. Efficiency, higher risk
Drop all Accum mode processing w/ Doppler	Too late		Degraded science
Drop spare FUV detector	Too late		Higher risk
Drop OSM1 capability (don't cover λ gap)	Too late		Degraded science
Reduce S/N requirement to 30 (no FF lamp)	Too late		Degraded science
Relax NUV resolution requirements below 20k	Too late		Degraded science
Remove on-orbit change-out capability	Too late		Higher risk
Drop dispersed light TA	Too late		Ops
No Ion Gauge	Too late		Higher risk, Ops
No external shutter	Too late		Ops
Change MSRs to QSRs	TBD	\$	Save trees
Eliminate Mechanism Lifetime tests	Too late		Higher risk
Reduce CDRLs	TBD	\$	Unknown
Drop G140L blazed effort	Implemented		Missed opportunity for improved science
Reduce G160M image testing	Too late		Higher risk

*The IPT has not yet done a detailed analysis to quantify actual \$ or time to be saved.

Page 28 September 17, 2002

Upcoming Events/Activities

- Continued support of I&T activities.
- Re-test of Cal/FF subsystem.
- Continued COS TV and calibration planning.
- Complete assembly of FUV-02.
- Commence FUV-02 environmental testing.
- Deliver FUV-02 to CU.

Issues

• None

Cosmic Origins Spectrograph Hubble Space Telescope Page 30 September 17, 2002