

COS Monthly Status Review July 27, 2000 NASA/GSFC

Cosmic Origins Spectrograph Hubble Space Telescope

Agenda

Progress Summary Since Last Monthly	J. Green
Optics Development Status	J. Green
Optics Test Status	J. Green
UCB FUV Detector Status	J. Green
UCB FUV Detector Performance Status	J. Green
CU Software Activities Status	J. Green
Schedules	J. Green
Upcoming Events/Activities	J. Green
CU Issues & Resolution Plan	J. Green
STScI Presentation	M. McGrath
BATC Presentation	D. Hood
Financial Splinter	GSFC/Ball/CU

Cosmic Origins Spectrograph Hubble Space Telescope

Progress Summary Since Last Monthly

- Took delivery of flight G140L gratings from JY.
- Began incorporating NUV channel and FF/Wave Cal SS into TAACOS.
- Continued G140L test preparations.
- Worked issues surrounding CM release of OP-01.
- Completed launch delay proposal.
- UCB made final selections on flight anodes.
- UCB completed BBA #1/MCP optimization.
- TDC-X & TDC-Y board stuffing began at J&T.

Optics Development Status - NUV Mirrors

- Tinsley:
 - Current delivery Plan for flight optics (recent changes in bold):

Item	Previous Due	New Date	Slip	New Date for
	Date			Spares
NCM1	7/21/00	8/7/00	2 weeks	8/30/00
NCM2	7/14/00	8/7/00	3 weeks	8/30/00
NCM3a,b,c	7/24-31/00	8/7/00	2 weeks	9/10/00

- We speak with Tinsley weekly to monitor their progress.
- Recent delays due to technical challenge in meeting figure requirements across full clear aperture.
- TA-1 mirrors have been coated at GSFC and are ready for delivery to Ball.

Cosmic Origins Spectrograph Hubble Space Telescope

Optics Development Status - Gratings

- JY has restored their efficiency test system and can now test in-house.
- G140L gratings (qty=2) picked-up by CU on Friday, June 30.
- Present grating delivery plan (no change since last month):

Item	Delivery Date	Coating Dates	Test Dates	Planned Test
		at GSFC		Location
G140L	Done	In process	8/00-10/00	CU
G160M	11/00	11/00	12/00-3/01	CU
G140L-Blazed	11/00	11/00	1/01	CU
G185M	8/00	8/00	9/00	GSFC (?)
G225M	11/00	11/00	12/00	GSFC (?)
G285M	12/00	12/00	1/01	GSFC (?)
G230L	1/01	1/01	2/01	GSFC (?)

Cosmic Origins Spectrograph Hubble Space Telescope

Optics Development Status - NUV Testing at GSFC

- Over the past several months, we thought we had worked out an agreement to have GSFC perform optical test of the NUV gratings.
- The GSFC optics group has recently informed the HST project that they lack the human resources to do the work.
- CU, the HST project, and the GSFC optics group are meeting today to discuss and work the problem.

Cosmic Origins Spectrograph Hubble Space Telescope

Optics Development Status - G140L Efficiency

- As measured by JY-

Cosmic Origins Spectrograph Hubble Space Telescope

COS FUV Grating Test Status 7/27/2000

- <u>G130M Gratings</u>
 - Testing and data analysis has been completed for both gratings.
 - Both gratings are satisfactory in all respects.
 - G130M-C calibration report is finished, G130M-B calibration report will be finished by end of month.
 - G130M-B appears to have slightly better performance.
- <u>G140L Gratings</u>
 - G140L-ETU testing indicated small blaze error this was corrected prior to etching the flight gratings.
 - Flight G140L laminar optics have been delivered to GSFC for coating.
 - First G140L grating has been coated and will be picked up today.
 - Test facility will be ready for the optics when bonding of first optic is completed.

Cosmic Origins Spectrograph Hubble Space Telescope

G130M Test Results

Wavelength (Å)	G130M-B	G130M-C	Required
(Source)	Grating Efficiency	Grating Efficiency	Efficiency
1164 (Kr-I)	38.6±1.8	37.1±1.3	? 0.27
1236 (Kr-I)	44.8±2.2	42.0±1.4	? 0.37
1304 (O-I)	45.4±1.5	43.3±1.6	? 0.36
1356 (O-I)	50.1±2.9	46.5±2.4	? 0.36
1411 (O-I)	50.6±1.7	47.8±1.7	? 0.36
1470 (Xe-I)	50.2±2.1	46.5±2.0	? 0.36

Grating Efficiency

Wavelength	G130M-B FWHM (mÅ)	$\begin{array}{c} \text{G130M-B} \\ \text{Resolution} \\ \lambda/\Delta \ \lambda \end{array}$	G130M-C FWHM (mÅ)	$\begin{array}{c} \text{G130M-C} \\ \text{Resolution} \\ \lambda/\Delta \ \lambda \end{array}$	Required Resolution
1219.49Å	51.9mÅ	23500	52.9mÅ	23000	? 20000
1283.70Å	56.9mÅ	22600	59.2mÅ	21700	? 20000
1382.05Å	53.8mÅ	25700	62.3mÅ	22200	? 20000

Grating Resolution

ength (Up)	A 11 1-1 -
	per Allowable
A) Estim	ate) Scatter/Å
1219 1.8	10^{-5} 2.0 ⁻⁵
1219 1.6	10^{-5} 2.0^{-5}
	Estim 1219 1.8 1219 1.6

Grating Scatter

Cosmic Origins Spectrograph Hubble Space Telescope

G130M Grating Efficiency vs. Wavelength

Cosmic Origins Spectrograph Hubble Space Telescope

COS Monthly Status Review

G130M-B Resolution Test Image - 1283.7Å

Cosmic Origins Spectrograph Hubble Space Telescope

COS Monthly Status Review

G130M-C Resolution Test Image - 1283.7Å

Cosmic Origins Spectrograph Hubble Space Telescope

James Green July 27, 2000

Sample Grating Scatter at 1200Å for G130M-C

Cosmic Origins Spectrograph Hubble Space Telescope

COS Monthly Status Review

Overview of FUV Detector Assemblies

- **DEB** (Detector Electronics Box)
 - DCE (Detector Control Electronics))
 - TDCs (Time-to-Digital Converters)
 - HVPS (High Voltage Power Supply)
 - LVPC(Low Voltage Power Converter)
- **DVA** (**D**etector Vacuum Assembly)
 - VHA (Vacuum Housing Assembly)
 - Detector Door Mechanism
 - Ion Pump Assembly
 - DBA (Detector Backplate Assembly)
 - Amplifiers
 - HVFM (High Voltage Filter Module)

Cosmic Origins Spectrograph Hubble Space Telescope

COS Monthly Status Review

FUV Detector Subsystem Block Diagram

• UCB is under contract to deliver 1 flight FUV detector subsystem and 1 flight-spare detector subsystem.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Personnel Issues

- Raffanti still supporting UCB ~ 1 day/week plus consulting via daily phone conversations.
- Baja Technologies is still supporting electrical systems test and integration preparations.
- MAG Systems has temporarily completed COS activities and will pick-up spare detector assembly and test in August.
- A new Post-Doc, Adrian Martin, has joined UCB and is supporting COS DVA development.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Facilities

- Old building renovations are well under way.
- All COS personnel have moved to office and lab space in the new building.
- New cleanroom has been assembled and is in "commissioning phase."
- We expect to start detector work in this facility $\sim 7/31$.
- Detector electronics test lab fully operational in new building.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Detector Vacuum Assembly

- DVA door assembly build-up has started.
- Flight door motor/gear-box assembly was TQCM contamination certified at CU.
- Vacuum Box, door assemblies, etc. are being assembled, leak checked, and operationally tested now at UCB.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - DVA Continued

- Backplate No. 1 has been through metrology at GSFC and returned to UCB.
- Backplates No's. 2 & 3 in final processing now at UCB and scheduled for metrology at GSFC in early August.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Electronics

- Power Systems (HVPS, LVPC, HVFM):
 - All are in-house awaiting next level of integration.
- AMPS:
 - In-house undergoing adjustments to address non-linearity.
- DCE A, B, C Boards:
 - In-house awaiting flight Actels before start of temperature cycle testing.
- Flight Harnass:
 - Nearing completion.

Cosmic Origins Spectrograph Hubble Space Telescope

Center for Astrophysics and Space Astronomy

UCB FUV Detector Status - Electronics Summary

ACTIVITY	Electronic Board													
	Amps	HVFM	HVPS	LVPC	DCE-A	DCE-B	DCE-C	TDC-X	TDC-Y					
Parts List	C	С	C	С	С	С	С	С	С					
Schematic	C	С	С	С	С	С	С	С	С					
Parts Stress Analysis	NS	NA	NA	NA	NA	С	С	С	С					
Worst Case Analysis	NA	NA	NA	NS	NA	С	С	С	С					
Board Thermal Analysis	C	NS	NS	NS	С	С	С	NS	NS					
Release Layout	С	С	С	С	С	С	С	С	С					
Board Fabrication	C	С	С	С	С	С	С	С	С					
Kit Parts	C	С	С	С	С	С	С	S	S					
Board Coupon Testing	C	С	С	С	С	С	С	С	С					
Stuff Boards	C	С	С	С	С	С	С	S	S					
Board Workmanship Acceptance	C	С	С	С	С	С	С	NS	NS					
Board Engineering Acceptance	C	С	С	С	С	С	С	NS	NS					
Engineering Test & Acceptance	C	С	С	С	С	С	С	NS	NS					
Temperature Cycle Test	S	С	С	С	NS	NS	NS	NS	NS					
Voltage Margin Test	S	NA	NA	NA	NS	NS	NS	NS	NS					
Final Acceptance Test	S	С	С	С	NS	NS	NS	NS	NS					
Legend	C = Comp	olete	NA = Not Applicabl	e	S = Starte	ed	NS= not s	started						

Changes since last MSR in Bold

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Actels

ACTIVITY	ACTEL FPGA's														
	Amps	HVFM	HVPS	LVPC	DCE-A	DCE-B	DCE-C	TDC-X	TDC-Y						
Initial ACTEL Design	NA	NA	NA	NA	С	С	NA	С	С						
ACTEL Peer Review	NA	NA	NA	NA	C	С	NA	С	С						
End-to-end System Simulation	NA	NA	NA	NA	S	S	NA	NS	NS						
FPGA tests with ETU electronics	NA	NA	NA	NA	C	С	NA	S	S						
Release ACTEL schematic/burn	NA	NA	NA	NA	NS	NS	NA	NS	NS						
Legend	C = Comp	olete	NA = Not		S = Starte	ed	NS= not s	started							
			Applicabl	e											

Changes since last MSR in bold

• First UCB Actel review package was shipped 7/21/00.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status TDC

- 4 TDC-X boards are partially stuffed at J&T now.
 - Final parts issues are being addressed.
 - UCB will likely install some parts after delivery from J&T.
- TDC-Y board stuffing began last week.
- 1st X, Y pair expected at UCB $\sim 8/4$.
- Remaining 6 boards should be delivered to UCB ~ 8/20.

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Systems

- Documentation Update:
 - ICD Revision A released 6/24/00.
 - Environmental Verification Plan released 6/20/00.
 - ECO for Revision A QA Plan in process.
- Mass and Power Updates (no change since last month):

		Mass (Kg)			Power (W)	
	Current	SoR	Margin	Current	SoR	Margin
	Estimate	Allocation (1)		Estimate	Allocation (1)	
DVA	19.43	21.5	9.6%	5.68	-	-
DEB	13.46	15.3	12%	46.46	-	-
Harness	2.7	3.4	20.5%	-	-	-
Total	35.59	40.2	11.5%	52.14	53.0	1.6%

Notes: (1) SoR Revision B allocations

Cosmic Origins Spectrograph Hubble Space Telescope

Center for Astrophysics and Space Astronomy

UCB FUV Detector Status - Schedule Overview

Activity/Task	Last Month's	This Month's	Current Status or Comments
	Plan	Plan	
Complete VHA	7/11/00 - 8/3/00	No change	On schedule for 8/3 completion
TDC Fab	7/5/00 - 8/7/00	Completion	1 pair expected $\sim 8/4$, others
		extended to 8/20	delayed until 8/22 due to parts
			problems
DCE Thermal Tests	7/11/00 - 8/2/00	8/1/00 - 8/14/00	Activity delayed pending Actel
			review. First DCE Actel
			package was shipped 7/21.
DBA No. 1 Ready for	8/1/00	8/17/00	Optimization of flight MCPs in
Integration			BBA #1 overran by 2 weeks.
Start System Integration	9/6/00	9/22/00	2 week slip forecast due to
			TDC, DCE, and DBA slips.
Deliver Flight No. 1 to Ball	2/7/00 (w/descopes)	2/23/00	Descoped delivery date has
	3/28/00 (w/o		slipped 2 weeks.
	descopes)		

Cosmic Origins Spectrograph Hubble Space Telescope

UCB FUV Detector Status - Descopes Plan for Schedule Recovery

- Last month UCB showed a schedule with an unacceptable delivery of 3/28/00. As a result, we implemented descopes 1 through 3 below. After these 3 descopes, the delivery moved back to 2/7/00.
- Further schedule erosion at UCB now has moved delivery to 2/23.
- New descope candidates are provided below.

	Descoped Activity	Time Saved	Risk Incurred	Status
1	UV QE detailed calibration	3 weeks	Lack of detailed QE knowledge	Adopted
			prior to detector delivery	6/00
2	Flat field detailed calibration	1 week	Lack of detailed flat-field	Adopted
			knowledge & performance	6/00
			prior to detector delivery	
3	Resolution detailed scan	3 weeks	Lack of detailed resolution	Adopted
	check		knowledge & performance	6/00
			prior to detector delivery	
4	Reduce number of T-V	~ 1 week	Reduced testing of flight article	Proposed
	cycles from 6 to 4			7/00

Cosmic Origins Spectrograph Hubble Space Telescope

FUV Detector Status Summary

- Two flight MCP sets chosen (4 req'd, 2 flight, 2 spare)
- Four flight anodes chosen (4 req'd, 2 flight, 2 spare)
- Eng. test unit TDC rate and resolution issues resolved
- QE grid design finished and accepted by P.I.
- Move to new SSL Addition almost complete

Cosmic Origins Spectrograph Hubble Space Telescope

Detector Performance - Flight MCP status

- Four flight sets required (2 flight and 2 spare).
- Two flight sets chosen for BBA #1 and stacks for BBA #2 undergoing stacking optimization.

Cosmic Origins Spectrograph Hubble Space Telescope

Detector Performance - Flight MCP Stacking Optimization

- Minimize gaps between plates that can adversely affect resolution
- Minimize dynamic range input to amplifiers
- We have one full BBA (2 sides) that is acceptable
- We have developed a method for working the bumps out of gain maps

Detector Performance - Flight MCP Stack Optimization

Cosmic Origins Spectrograph Hubble Space Telescope

Detector Performance - Flight MCP Stack Optimization

Cosmic Origins Spectrograph Hubble Space Telescope

Detector Performance - Flight MCP Stack Flat Field

• UV flat field

• Gain map:

Cosmic Origins Spectrograph Hubble Space Telescope

Detector Performance - Flight Anode Selection

- Four Anodes required (2 Flight, 2 Spare)
- All 10 flight anode candidates tested
 - Visual inspection and bench pulse tests
 - Imaging tests with Anode test detector and pinhole mask
 - Results compared to S/N 137 which has been characterized in detail
- Five anodes pass test
 - Four are final flight version
 - One is previous version (narrow Y fingers)
- Remainder suffer from imaging non-linearities

Cosmic Origins Spectrograph Hubble Space Telescope

Pinhole Mask Image - Flight Anode SN097 (1/2 Field of View, 500µm centers)

:	1	: :	1	5	:	: :		1	:	1	: :	2	:	:	:	: :		3	÷	:	: :		1	5	:	: :	: :	:	÷	;	;	1	:	÷	: :	: :	1	:	í.	: :	;	;	\$; ;	: :	÷	÷	1	1	: :	: :	;	: :	:	;	: :	:	;	::	::	::	;	: :	ł	$\{ i \}$:::	;
,								÷					,												÷						i.	÷	ŝ	í	ī,	į,	i.	i.			,	÷					÷	. 1	÷.	ċ		•			•		r	r		• •	• •				• (• • •	,
				•	•					• •			,	¢		. ,		,											·	•	•	• •		÷	5			•	•	• •	,	,	,	• •	• •	·	·		•	•	1	÷	• •	-		• •		•	•	• •	• •	0			ϵ	• • •	۰
·	ŀ			•				,				,			•		.,	,	i	÷	• •				•				,	r	•	• •	i	,	• •			-		• •	•	•	•	• •	• •	•	•	• •	•	•		•	• •	-	•		•	·	• •	• •	• •	•	• •	•	• •	• • •	۴
·	•	• •		,	•	•		,	•	•		1	•		,	•		,	'	¢	• •				•	•			,	•	•	÷,	•	,	•			•		• •	•		•	• •		,	•	• •		•	• •	•	• •	•	•	• •	•	•	• •	• •	• •	•	• •		•	•••	۴
ŀ	·			÷	•	•	• •	•	٠	•		•	•	,	•			ł	,	·						•		•	ï	•	•		1	٠	•	• •	1	•	•	• •	•	•	•	• •		'	•			•	• •	•	• •	-		• •		•	•••	• •	•••	•	• •			• ••	"
•	·	•	• •	•	•	-		,	•	• •	•	1		•				•	ł	·	•	•	•	•	•	•	•		•	•	•	• •	•	·	•	•	•	•		• •	•	•	•	• •		'	•		•	•	• •	•	• •	-	7		•	•	• •	• •	• •	•	• •	•	•	• • •	"
•	•	• •	• •	•	-	•	• •	•	•	•		,	,	٠	•	•		•	'	•	•		,	1	•	-		-	•		•	• •	•	·	•		•	'	1	• •		•	•	• •	• •	•					• •	•	• •	-	-		•	•	• •			•	• •		•	••••	*
۰	•	• •	• •	•	•	•	• •	•	•	•	• •	•	•	•	•	•	• •	•	'	'		•	,	•	•	1		-	•	•	•	• •	•	•		• •		•	1	• •		•	1		• •		•	• •		•	• •	·	• •	-	-		•	•			• •			•			*
	,	•	• •	·	1	•			•		• •	1	'	•	•	•			•	•			'	'	'				•	•	•	•		'	'				1			-	-		• •	•		• •		•		•											2.	Ĩ			
•	•		• •	'	'	1			•			'	ľ	'	1				•	•	•		'	'	'			-	1		-			Ċ				÷	'			1				•										: :						2					-
•	•		•••	'	•				•	•		'	•	1	1				1				'	•					-	-	-	•	• •	•	•			÷	Ċ													÷															
-	•			'	1				1				1	:	1				1												2							:	:			Ì					2								÷												2
1					:	2			2	2			÷	1	ì					2				:	÷	Ì					2			:	2			:	Ċ																												
1	1					2	2		1				1	Ċ	1					2									Ċ										Ċ													_															2
1	1				:				1	2				2		1			2	2				Ĵ	2	2			Ì	2	2			2				2	2				2																								
'	1	•	• •		1									1	Ċ					2				Ċ							1			1						1							1					2															1
ľ	'		• •		1				1	1			•	•	1	Ľ			î	1				•	`	1	1		ľ	'	'			1				•	ì			1	2							2					2	2.		÷									1
'	1	1							1				-	•		1	• •		1	1	1			1	1	1			'	'	'	Ľ						2	1	• •		1				1	1	1	1	1		1	1		1							,					٦
÷	1	1			÷		1		÷.	;			÷	ł	;	:			i	÷	1			ŝ	ç	2			÷	÷	;	;		1	;			Ę,	2			1	5	2	1	1	÷	1		÷		÷			-								• •		۰.		1

Cosmic Origins Spectrograph Hubble Space Telescope

Pinhole Mask Image - Flight Anode SN105 (1/2 Field of View, 500µm centers)

5	2	1		:	:	: :	:	11	:	:	: :	5	: :	-	: :	:	11		:	5	1	ć:	11	•	5	1	ŝ.	11	53	9	53	1	• •	÷	11	5.5	11	: :	÷.	ł ł	5.5	11	53	1	11	9	53	16	÷	ŧ į	66	61.6		•		110	i.
				1	1						• •	•	•••	-		•••		•••	•	1				2	1		-	11	-		1	1	11	1			11	15	5	15	1				11		11		1	• •				1		11	1
		• •					•	• •	•	•		•	• •	-	• •	•••	• •	• •		-		••	••	•	• •	•	-	•••	-		• •		• •	1			• •	••		• •	• •		• •		• •	• •				• •	••			1			
•	•	• •	1	1	٠	• •		• •		•	• •	٠	• •		• •	•••	• •	• •		•	• •	• •	• •	٠			•	• •	•		• •		• •	٠		•	• •	• •		• •	• •		٠.		• •		• •		4	• •	• •			٢.	• •		J.
•	•	• •	• •	•	•	• •	•	• •	•	•	• •	,	• •	•	• •	• •	• •	• •	•	-	• •	••	• •		•		-	• •	- 1	• •	• •			÷	• •	,	• •	• •			• •	•			• •		• •		٠					r i			ł
•			•	•	•	• •	•	• •	•	•	• •	•	• •		• •	• •	• •	• •	•	•	• •	••	• •	٠	• •	-	-		•	• •	• •		•	٠	• •	•		• •	•	• •	• •		• •	•	• •	• •	• •		•	• •	•••	•••		•	•	• • • •	,
•	•	• •	• •	•	·	• •	•	• •	•	•	• •	•	• •	•	• •	• •	• •	•	•	-	• •	•••	• •		• •	-	-	• •		•	• •		• •	•	• •	•	• •	• •	•	•••	• •	•	• •	•		• •	• •	• •	٠	• •	•••	•••	•	•	• •	• • • •	ŀ
•	•	• •	• •	•	·	• •	•	• •	•	•	• •	2	• •	•	• •	•	• •	• •	•	•	• •		• •		•	-	-	•	-	• •	• •		• •	·	• •	•	•••	• •	•	• •	•		• •	•	• •	• •	• •		•	• •	•••	•	•	•	• •	• • • •	1
·	•	• •	• •	•	·	• •	•	• •	•	•	• •	•	• •	•	• •	• •	• •		-	•	• •		• •	·	•		-	• •	-	• •	• •	• •		·	• •	•	•••	• •	•	•••	• •	• •	• •	•	• •	•	• •	•	•	• •	•••		•	•	• •		1
•	•	• •	• •	•	·	• •	•	• •	•	•	• •	•	• •	•	• •	• •			•		• •		• •	•	•			• •	•		• •			•	• •	•	• •		•	• •	•		• •	•	•••	•••	•	•	'	• •	•••		•••	•		• • • •	•
	•	• •	• •		·	• •	•••	• •	•	•	• •	•	• •	•	•	• •	• •	• •	•	1	• •	•••		•	•			• •	•	• •	• •		• •	·	•••	•	• •	• •	•	• •	• •	•••	• •		• •	•••	• •	•	'	• •	•••	•••	•	•	• •		•
•	•			•	•	• •		• •			• •		• •	•	• •	• •	• •	• •	•	•	• •		• •	•	-		•			•••			• •	•	• •	•	• •	• •	•					•	•••	• •		• •	•	• •		•••			• •	• • • •	'
'	•	• •	• •		•	•		• •			• •	•	• •	•		• •	• •	• •				•••	•••	•	•		•	• •		•••	•		• •	•	• •	•	• •	• •	•	• •	• •	•	• •		• •	•••			•	• •	•••		••	•		• • • •	•
•	•	•	• •		•	• •	• •	• •		•	• •	2	• •		• •	• •	•	• •	٠		• •	•••	• •	·	•			• •		• •		• •	• •	2	• •	•		• •	·	• •	•	•	• •	•	•••	• •	•	• •	•			•••	•	-	•	• • • •	1
•	•		• •		•	• •	•••	•	•	•			• •	•	• •	• •	• •	• •	•	•		••	• •	•	•		·		•	•••	•	•	• •	·	• •	•	•••	• •	٠	• •	•	•	• •	•	• •	• •	•	•	٠	• •	•••	•••	•	•	• •	• • •	,
•	•	• •	• •			•		• •		•	• •	1	• •	• •	1	• •	• •	• •	٠	٠	• •	•••	- 1	•	•		•	•••	•	•••	•	• •	• •	•	•••	•	•	• •		5.7	•	•	• •	•	• •	• •	•	• •	•	• •		•••	••	•	•	••••	1
,	•	•	• •		•	• •	• •	•		1	• •	٠	• •	• •	• •	• •	• •	• •	•	۰.	• •	••	• •	·	•	• •		•		• •	•		• •	٩	• •	•	• •	• •		• •	•	•	• •	•	• •	• •	5	• •	•	• •		•••	• •	•		1.00	•
•	•	•		•	•	•	1	• •		•	• •	•	• •	•	٠,	• •	• •	• •	٠	٠	• •	• •	• •	·	•	•	·	1.1		••	•	• •	• •	۰.	• •	• •	• •	• •	·	• •	٩.		• •	•	•	• •	• •		÷	• •		<u>е</u> с 1	•	٠	•	• • •	•
,	•	• •	• •			•		•	•	•	• •	,		.,	, ,	• •	• •	•	•		• •	• •	•••	٠		• •	·	• •		• •				÷	• •		• •	ς (۰,		•	ς.,	λ,	• •	• •	•		٠	• •	• •		•	•			,
		• •	• •	,		•		•				٠	• •	• •	• •		•	• •		•		• •				• •				. ,				•	• •	•	• •				Ċ,	۰.	$\langle \cdot \rangle$		• •	• •		• •	•	• •	• •	•••	• •	•	•	• • •	

Cosmic Origins Spectrograph Hubble Space Telescope

Detector Performance - Flight Anode Selection

SN	Make	X resolution(μ m)	Y resolution (μm)	Distortion	ns? √ =Yes
		4800V	4800V	Х	Y
073	Triangle	36.7	28.4	\checkmark	
096	Tyco	26.6	22.9	\checkmark	
097	Tyco	25.6	25.9		
102	Triangle ³	* 30.2	30.9		
104	Triangle	-	-	\checkmark	\checkmark
105	Triangle	27.7	23.3	\checkmark	
106	Triangle	26.0	24.9	\checkmark	
107	Triangle	32.3	28.1		
137	Tyco	28.0	22.9		
138	Тусо	26.6	29.6		

Cosmic Origins Spectrograph Hubble Space Telescope

Flight Electronics Optimization

- TDC Eng. Test Unit (ETU) modifications completed
- Tested with
 - MCP detector
 - Flight Anode
 - Flight design amplifiers
- Close to achieving resolution specification
 - TDC not the limiting factor
- Deadtime better than specification
- Resolution loss as a function of rate appears acceptable

Cosmic Origins Spectrograph Hubble Space Telescope

Flight Electronics Optimization

Cosmic Origins Spectrograph Hubble Space Telescope

Flight Electronics Optimization

Cosmic Origins Spectrograph Hubble Space Telescope

Flight Electronics Optimization

Livetime test, TDC ETU w/ photons

Cosmic Origins Spectrograph Hubble Space Telescope

CU Software/Operations Efforts

- GSE Software Development at CASA-ARL
 - COS Science Data Index and Analysis Software a.k.a. "CEDAR"
 - Website gives full details for CEDAR: <u>http://cos-arl.colorado.edu/CEDAR/</u>
 - Build II training held at BATC on July 13, 2000.
 - Build II completed and released on July 19, 2000.
 - Build II installed at BATC on July 20, 2000.
 - Build III development currently on hold until specific TLM, Science Data Header and Science Data Format details - which are captured in DM-06 and DM-02 - are mature enough to allow further code development.
 - Build III completion will take approx. 1 month from the time these details become available.
 - In the meantime, CEDAR lead developer, Stéphane Béland, will be working full-time at BATC to assist with COS FSW Testing.

Cosmic Origins Spectrograph Hubble Space Telescope

CU Software/Operations Efforts

- COS Target Acquisition Simulation Software a.k.a. "TAACOS"
- Website gives full details for TAACOS: <u>http://cos-arl.colorado.edu/TAACOS/</u>
 - Report on TA FSW "Thresholding" issues released on July 26, 2000.
 - Revised Report on Recommended TA FSW and Operations Changes to be released on August 7, 2000.
 - Phase I Software for NUV channel in development and slated for completion in late August, 2000.
 - Phase I TAACOS Report for NUV Channel to be completed in early September, 2000.
 - It is expected that Phase I TAACOS will be adequate to answer questions about COS TA FSW Requirements. Therefore, Phase II TAACOS software development will likely be put off for at least 6-12 months, so lead developer, Dr. Steven Penton, can move onto other COS SW Tasks (i.e., I&T Calibration Software).

Cosmic Origins Spectrograph Hubble Space Telescope

Assistance with FSW Development Efforts at UCB

- DCE FSW Documentation Efforts
 - Website gives full details of DCE Documentation efforts:

http://cos-arl.colorado.edu/DCE/

- DCE Software Development is well underway, with current code supporting all areas of FUV Detector HW development and test.
- DCE FSW Code Walk-Thru (Part 2 of 3) being held at BATC on July 27 & 28. Of the 54 Action Items taken during the first Code Walk-Thru (held on June 5 & 6, 2000), 35 are closed and 19 remain open, but are being addressed.
- DCE FSW "functionality" is approx. 90% complete. The next phase of DCE FSW development involves primarily debugging and requirements & design verification.
- DCE Software Test Procedures are in development, and all unit and component test procedures are expected to be complete by late August, 2000.

Cosmic Origins Spectrograph Hubble Space Telescope

COS Schedule for CU

• The detailed CU schedule is available as a separate hand-out.

Task	Status
G160M/G140L – Blazed Grating	G160M/G140L-Blazed tests
Testing	completion will slip out 2 months due
	to delays in grating delivery
CEDAR Software Development	Ahead of schedule
TAACOS Software Development	On schedule
G140L Gratings & Testing	Grating picked up 6/30/00. CU will
	be ready to start testing in 8/00.
JY Deliveries	Presented earlier
Tinsley	Presented earlier

Cosmic Origins Spectrograph Hubble Space Telescope

Upcoming Events/Activities

- Take delivery of NUV flight optics from Tinsley.
- Start G140L optical testing at CU.
- Pick-up G185M grating from JY.
- Put OP-01 under "quasi" CM.
- Receive TDC assy's from J&T.
- Complete BBA #2/MCP optimization.
- Complete DBA #1 processing.
- Burn flight Actels and complete DCE testing.

Questions, Issues & Resolution Plan

• None

Cosmic Origins Spectrograph Hubble Space Telescope