MEMO

Rev B, 20 January 2001

William I. Clement, Ph.D.

COS DCE Cyclic Redundancy Code Computations

Standard Cyclic Redundancy Codes are based on polynomial division. The data for which a CRC is being calculated are treated as the coefficients of a large polynomial. This polynomial is divided by a "generator polynomial" of some modest order (e.g. 8, 16, 32), resulting in a remainder polynomial of order less than the generator. The coefficients of this remainder polynomial are collectively known as the CRC. This is a linear operation and, as such, it is a simple matter to pad the data stream with some additional data values in order to yield a specified CRC.

Due to the nonlinear nature of the CRC algorithm used for COS DCE (it is not true polynomial division), one cannot use this standard method of generating a desired CRC. Instead, the following analysis indicates how such a computation is made.

Designating the current value of the 16 -bit CRC as C :

$$
\mathrm{C}=\left(\mathrm{C}_{15}, \mathrm{C}_{14}, \mathrm{C}_{13}, \mathrm{C}_{12}, \mathrm{C}_{11}, \mathrm{C}_{10}, \mathrm{C}_{9}, \mathrm{C}_{8}, \mathrm{C}_{7}, \mathrm{C}_{6}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{3}, \mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{0}\right)
$$

and the next 16 bits of data to be processed as D :

$$
\mathrm{D}=\left(\mathrm{D}_{15}, \mathrm{D}_{14}, \mathrm{D}_{13}, \mathrm{D}_{12}, \mathrm{D}_{11}, \mathrm{D}_{10}, \mathrm{D}_{9}, \mathrm{D}_{8}, \mathrm{D}_{7}, \mathrm{D}_{6}, \mathrm{D}_{5}, \mathrm{D}_{4}, \mathrm{D}_{3}, \mathrm{D}_{2}, \mathrm{D}_{1}, \mathrm{D}_{0}\right)
$$

and the CRC value after these 16 data bits have been processed as X :

$$
\mathrm{X}=\left(\mathrm{X}_{15}, \mathrm{X}_{14}, \mathrm{X}_{13}, \mathrm{X}_{12}, \mathrm{X}_{11}, \mathrm{X}_{10}, \mathrm{X}_{9}, \mathrm{X}_{8}, \mathrm{X}_{7}, \mathrm{X}_{6}, \mathrm{X}_{5}, \mathrm{X}_{4}, \mathrm{X}_{3}, \mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}\right)
$$

we find that:

$$
\mathrm{X}_{0}=\mathrm{C}_{12} \oplus \mathrm{C}_{11} \oplus \mathrm{C}_{8} \oplus \mathrm{C}_{4} \oplus \mathrm{C}_{0} \oplus \mathrm{D}_{12} \oplus \mathrm{D}_{11} \oplus \mathrm{D}_{8} \oplus \mathrm{D}_{4} \oplus \mathrm{D}_{0}
$$

Our task is to find the data D which, combined with the known C , yields a desired X .
Notice the symmetry in this solution. In every expression, wherever a bit from the current CRC $\left(\mathrm{C}_{\mathrm{x}}\right)$ exists, the corresponding data bit $\left(D_{x}\right)$ is also present. Thus, defining $B_{x}=C_{x} \oplus D_{x}$, the table may be rewritten:

X_{15}	$=B_{11} \oplus B_{10} \oplus B_{7} \oplus B_{3}$
X_{14}	$=B_{10} \oplus B_{9} \oplus B_{6} \oplus B_{2}$
X_{13}	$=B_{9} \oplus B_{8} \oplus B_{5} \oplus B_{1}$
X_{12}	$=B_{15} \oplus B_{8} \oplus B_{7} \oplus B_{4} \oplus B_{0}$
X_{11}	$=B_{15} \oplus B_{14} \oplus B_{11} \oplus B_{10} \oplus B_{6}$
X_{10}	$=B_{14} \oplus B_{13} \oplus B_{10} \oplus B_{9} \oplus B_{5}$
X_{9}	$=B_{15} \oplus B_{13} \oplus B_{12} \oplus B_{9} \oplus B_{8} \oplus B_{4}$
X_{8}	$=B_{15} \oplus B_{14} \oplus B_{12} \oplus B_{11} \oplus B_{8} \oplus B_{7} \oplus B_{3}$
X_{7}	$=B_{15} \oplus B_{14} \oplus B_{13} \oplus B_{11} \oplus B_{10} \oplus B_{7} \oplus B_{6} \oplus B_{2}$
X_{6}	$=B_{14} \oplus B_{13} \oplus B_{12} \oplus B_{10} \oplus B_{9} \oplus B_{6} \oplus B_{5} \oplus B_{1}$
X_{5}	$=B_{13} \oplus B_{12} \oplus B_{11} \oplus B_{9} \oplus B_{8} \oplus B_{5} \oplus B_{4} \oplus B_{0}$
X_{4}	$=B_{15} \oplus B_{12} \oplus B_{8} \oplus B_{4}$
X_{3}	$=B_{15} \oplus B_{14} \oplus B_{11} \oplus B_{7} \oplus B_{3}$
X_{2}	$=B_{14} \oplus B_{13} \oplus B_{10} \oplus B_{6} \oplus B_{2}$
X_{1}	$=B_{13} \oplus B_{12} \oplus B_{9} \oplus B_{5} \oplus B_{1}$
X_{0}	$=B_{12} \oplus B_{11} \oplus B_{8} \oplus B_{4} \oplus B_{0}$

Our task becomes one of finding the B which yields a desired X and then, using known C, solving for the required data word D using the relationship

$$
\mathrm{B}=\mathrm{C} \oplus \mathrm{D} \quad \rightarrow \quad \mathrm{D}=\mathrm{C} \oplus \mathrm{~B}
$$

Unfortunately, analytical solution to this set of simultaneous nonlinear equations in B_{x} is difficult. However, a simple computational solution involves generating the 2^{16} possible values of B and finding those which yield values of X in which only one bit is ' 1 ' and all else are ' 0 '. This is equivalent to saying we are finding those values of B that toggle individual bits of X. Then, given C we can solve for the data value D which produces that X. Exhaustive search of these 2^{16} possibilities results in an interesting finding. There are exactly 16 values of B which uniquely serve our purposes -16 values which each toggle a different bit in \mathbf{X}. (Also, to produce $\mathrm{X}=\mathbf{0}$, the necessary and sufficient condition is $\mathbf{B}=\mathbf{0}$ which, in turn, requires $\mathrm{D}=\mathrm{C}$.) The table below shows the 16 values of B which toggle individual bits in X .

X Bit Toggled	B Value Producing the Bit Change (hex)
X_{0}	$9 D 71$
X_{1}	2 AC3
X_{2}	5586
X_{3}	AB0C
X_{4}	4639
X_{5}	8 C72
X_{6}	08 C 5
X_{7}	118 A
X_{8}	2314
X_{9}	4628
X_{10}	8 C 50
X_{11}	0881
X_{12}	1102
X_{13}	2204
X_{14}	4408
X_{15}	8810

Because all terms in $\mathrm{X}\left(\mathrm{X}_{15} \ldots \mathrm{X}_{0}\right)$ are formed by XORing terms of $\mathrm{B}\left(\mathrm{B}_{15} \ldots \mathrm{~B}_{0}\right)$, it can be shown that to toggle multiple bits in X , simply XOR the corresponding values of B found in the above table. Thus, any of the 2^{16} possible values of X may be obtained by combination of the corresponding values of B from the table. An example illustrates the procedure.

EXAMPLE: FOR A BLOCK OF ‘ N ' BYTES, COMPUTE A NEW VALUE FOR THE LAST TWO BYTES SO THAT THE overall CRC FOR THE BLOCK IS 1234 (HEXADECIMAL). ASSUME THE CRC FOR THE FIRST 'N-2’ BYTES IS 93 C 5 .

Solution: The desired CRC, $\mathrm{X}=\mathbf{1 2 3 4}$, Written in binary is $\mathrm{X}=0001001000110100$. Thus, bits $2,4,5,9$, AND 12 NEED TO BE SET TO ' 1 ' and all OTHERS TO ' 0 '. FORMING THE XOR OF THE FIVE corresponding values of B From the table (those for $\mathrm{X}_{2}, \mathrm{X}_{4}, \mathrm{X}_{5}, \mathrm{X}_{9}$, and X_{12}), we have

$$
\mathrm{B}=5586 \oplus 4639 \oplus 8 \mathrm{C} 72 \oplus 4628 \oplus 1102=\mathbf{C 8 E} 7
$$

FROM THIS, WE SOLVE FOR THE DATA WORD D WHICH PRODUCES THIS B

$$
\mathrm{D}=\mathrm{C} \oplus \mathrm{~B}=93 \mathrm{C} 5 \oplus \mathrm{C} 8 \mathrm{E} 7=\mathbf{5 B} \mathbf{2 2}
$$

Since the Cos DCE CRC algorithm processes a byte at a time, data byte 5B is processed FIRST (AFTER THE ‘N-2’ BYTES, OF COURSE), FOLLOWED BY DATA BYTE 22. THE RESULT IS $\mathrm{X}=\mathbf{1 2 3 4}$, AS DESIRED.

