MEMO Rev B, 20 January 2001 William I. Clement, Ph.D.

COS DCE Cyclic Redundancy Code Computations

Standard Cyclic Redundancy Codes are based on polynomial division. The data for which a CRC is being calculated are treated as the coefficients of a large polynomial. This polynomial is divided by a "generator polynomial" of some modest order (e.g. 8, 16, 32), resulting in a remainder polynomial of order less than the generator. The coefficients of this remainder polynomial are collectively known as the CRC. This is a linear operation and, as such, it is a simple matter to pad the data stream with some additional data values in order to yield a specified CRC.

Due to the nonlinear nature of the CRC algorithm used for COS DCE (it is not true polynomial division), one cannot use this standard method of generating a desired CRC. Instead, the following analysis indicates how such a computation is made.

Designating the current value of the 16-bit CRC as C:

$$C = (C_{15}, C_{14}, C_{13}, C_{12}, C_{11}, C_{10}, C_9, C_8, C_7, C_6, C_5, C_4, C_3, C_2, C_1, C_0)$$

and the next 16 bits of data to be processed as D:

 $\mathbf{D} = (D_{15}, D_{14}, D_{13}, D_{12}, D_{11}, D_{10}, D_9, D_8, D_7, D_6, D_5, D_4, D_3, D_2, D_1, D_0)$

and the CRC value after these 16 data bits have been processed as X:

$$\mathbf{X} = (X_{15}, X_{14}, X_{13}, X_{12}, X_{11}, X_{10}, X_9, X_8, X_7, X_6, X_5, X_4, X_3, X_2, X_1, X_0)$$

we find that:

X ₁₅	=	$\mathbf{C}_{11} \oplus \mathbf{C}_{10} \oplus \mathbf{C}_7 \oplus \mathbf{C}_3 \oplus \mathbf{D}_{11} \oplus \mathbf{D}_{10} \oplus \mathbf{D}_7 \oplus \mathbf{D}_3$
X ₁₄	=	$C_{10} \oplus C_9 \oplus C_6 \oplus C_2 \oplus D_{10} \oplus D_9 \oplus D_6 \oplus D_2$
X ₁₃	=	$C_9 \oplus C_8 \oplus C_5 \oplus C_1 \oplus D_9 \oplus D_8 \oplus D_5 \oplus D_1$
X ₁₂	=	$C_{15} \oplus C_8 \oplus C_7 \oplus C_4 \oplus C_0 \oplus D_{15} \oplus D_8 \oplus D_7 \oplus D_4 \oplus D_0$
X ₁₁	=	$\mathbf{C}_{15} \oplus \mathbf{C}_{14} \oplus \mathbf{C}_{11} \oplus \mathbf{C}_{10} \oplus \mathbf{C}_6 \oplus \mathbf{D}_{15} \oplus \mathbf{D}_{14} \oplus \mathbf{D}_{11} \oplus \mathbf{D}_{10} \oplus \mathbf{D}_6$
X ₁₀	=	$C_{14} \oplus C_{13} \oplus C_{10} \oplus C_9 \oplus C_5 \oplus D_{14} \oplus D_{13} \oplus D_{10} \oplus D_9 \oplus D_5$
X9	=	$C_{15} \oplus C_{13} \oplus C_{12} \oplus C_9 \oplus C_8 \oplus C_4 \oplus D_{15} \oplus D_{13} \oplus D_{12} \oplus D_9 \oplus D_8 \oplus D_4$
X_8	=	$C_{15} \oplus C_{14} \oplus C_{12} \oplus C_{11} \oplus C_8 \oplus C_7 \oplus C_3 \oplus D_{15} \oplus D_{14} \oplus D_{12} \oplus D_{11} \oplus D_8 \oplus D_7 \oplus D_3$
X_7	=	$C_{15} \oplus C_{14} \oplus C_{13} \oplus C_{11} \oplus C_{10} \oplus C_7 \oplus C_6 \oplus C_2 \oplus D_{15} \oplus D_{14} \oplus D_{13} \oplus D_{11} \oplus D_{10} \oplus D_7 \oplus D_6 \oplus D_2$
X ₆	=	$C_{14} \oplus C_{13} \oplus C_{12} \oplus C_{10} \oplus C_9 \oplus C_6 \oplus C_5 \oplus C_1 \oplus D_{14} \oplus D_{13} \oplus D_{12} \oplus D_{10} \oplus D_9 \oplus D_6 \oplus D_5 \oplus D_1$
X ₅	=	$C_{13} \oplus C_{12} \oplus C_{11} \oplus C_9 \oplus C_8 \oplus C_5 \oplus C_4 \oplus C_0 \oplus D_{13} \oplus D_{12} \oplus D_{11} \oplus D_9 \oplus D_8 \oplus D_5 \oplus D_4 \oplus D_0$
X_4	=	$C_{15} \oplus C_{12} \oplus C_8 \oplus C_4 \oplus D_{15} \oplus D_{12} \oplus D_8 \oplus D_4$
X ₃	=	$C_{15} \oplus C_{14} \oplus C_{11} \oplus C_7 \oplus C_3 \oplus D_{15} \oplus D_{14} \oplus D_{11} \oplus D_7 \oplus D_3$
X_2	=	$C_{14} \oplus C_{13} \oplus C_{10} \oplus C_6 \oplus C_2 \oplus D_{14} \oplus D_{13} \oplus D_{10} \oplus D_6 \oplus D_2$
\mathbf{X}_1	=	$C_{13} \oplus C_{12} \oplus C_9 \oplus C_5 \oplus C_1 \oplus D_{13} \oplus D_{12} \oplus D_9 \oplus D_5 \oplus D_1$

$X_0 \quad = \quad C_{12} \oplus C_{11} \oplus C_8 \oplus C_4 \oplus C_0 \oplus D_{12} \oplus D_{11} \oplus D_8 \oplus D_4 \oplus D_0$

Our task is to find the data D which, combined with the known C, yields a desired X.

Notice the symmetry in this solution. In every expression, wherever a bit from the current CRC (C_x) exists, the corresponding data bit (D_x) is also present. Thus, defining $B_x = C_x \oplus D_x$, the table may be rewritten:

X ₁₅	=	$\mathbf{B}_{11} \oplus \mathbf{B}_{10} \oplus \mathbf{B}_7 \oplus \mathbf{B}_3$
X ₁₄	=	$\mathbf{B}_{10} \oplus \mathbf{B}_9 \oplus \mathbf{B}_6 \oplus \mathbf{B}_2$
X ₁₃	=	$\mathbf{B}_9 \oplus \mathbf{B}_8 \oplus \mathbf{B}_5 \oplus \mathbf{B}_1$
X ₁₂	=	$\mathbf{B}_{15} \oplus \mathbf{B}_8 \oplus \mathbf{B}_7 \oplus \mathbf{B}_4 \oplus \mathbf{B}_0$
X ₁₁	=	$\mathbf{B}_{15} \oplus \mathbf{B}_{14} \oplus \mathbf{B}_{11} \oplus \mathbf{B}_{10} \oplus \mathbf{B}_6$
X ₁₀	=	$\mathbf{B}_{14} \oplus \mathbf{B}_{13} \oplus \mathbf{B}_{10} \oplus \mathbf{B}_9 \oplus \mathbf{B}_5$
X9	=	$\mathbf{B}_{15} \oplus \mathbf{B}_{13} \oplus \mathbf{B}_{12} \oplus \mathbf{B}_9 \oplus \mathbf{B}_8 \oplus \mathbf{B}_4$
X_8	=	$\mathbf{B}_{15} \oplus \mathbf{B}_{14} \oplus \mathbf{B}_{12} \oplus \mathbf{B}_{11} \oplus \mathbf{B}_8 \oplus \mathbf{B}_7 \oplus \mathbf{B}_3$
X_7	=	$\mathbf{B}_{15} \oplus \mathbf{B}_{14} \oplus \mathbf{B}_{13} \oplus \mathbf{B}_{11} \oplus \mathbf{B}_{10} \oplus \mathbf{B}_7 \oplus \mathbf{B}_6 \oplus \mathbf{B}_2$
X_6	=	$\mathbf{B}_{14} \oplus \mathbf{B}_{13} \oplus \mathbf{B}_{12} \oplus \mathbf{B}_{10} \oplus \mathbf{B}_9 \oplus \mathbf{B}_6 \oplus \mathbf{B}_5 \oplus \mathbf{B}_1$
X ₅	=	$\mathbf{B}_{13} \oplus \mathbf{B}_{12} \oplus \mathbf{B}_{11} \oplus \mathbf{B}_9 \oplus \mathbf{B}_8 \oplus \mathbf{B}_5 \oplus \mathbf{B}_4 \oplus \mathbf{B}_0$
X_4	=	$B_{15} \oplus B_{12} \oplus B_8 \oplus B_4$
X ₃	=	$\mathbf{B}_{15} \oplus \mathbf{B}_{14} \oplus \mathbf{B}_{11} \oplus \mathbf{B}_7 \oplus \mathbf{B}_3$
X ₂	=	$\mathbf{B}_{14} \oplus \mathbf{B}_{13} \oplus \mathbf{B}_{10} \oplus \mathbf{B}_6 \oplus \mathbf{B}_2$
\mathbf{X}_1	=	$\mathbf{B}_{13} \oplus \mathbf{B}_{12} \oplus \mathbf{B}_9 \oplus \mathbf{B}_5 \oplus \mathbf{B}_1$
X_0	=	$B_{12} \oplus B_{11} \oplus B_8 \oplus B_4 \oplus B_0$

Our task becomes one of finding the B which yields a desired X and then, using known C, solving for the required data word D using the relationship

$$\mathbf{B} = \mathbf{C} \oplus \mathbf{D} \longrightarrow \mathbf{D} = \mathbf{C} \oplus \mathbf{B}$$

Unfortunately, analytical solution to this set of simultaneous nonlinear equations in B_x is difficult. However, a simple computational solution involves generating the 2¹⁶ possible values of **B** and finding those which yield values of **X** in which only one bit is '1' and all else are '0'. This is equivalent to saying we are finding those values of **B** that toggle individual bits of **X**. Then, given **C** we can solve for the data value **D** which produces that **X**. Exhaustive search of these 2¹⁶ possibilities results in an interesting finding. There are exactly 16 values of **B** which uniquely serve our purposes – 16 values which each toggle a different bit in **X**. (Also, to produce X = 0, the necessary and sufficient condition is B = 0 which, in turn, requires D = C.) The table below shows the 16 values of **B** which toggle individual bits in **X**.

X Bit Toggled	B Value Producing the Bit Change (hex)
X_0	9D71
X ₁	2AC3
X ₂	5586
X ₃	AB0C
X4	4639
X ₅	8C72
X ₆	08C5
X ₇	118A
X ₈	2314
X9	4628
X ₁₀	8C50
X ₁₁	0881
X ₁₂	1102
X ₁₃	2204
X ₁₄	4408
X ₁₅	8810

Because all terms in X (X₁₅...X₀) are formed by XORing terms of B (B₁₅...B₀), it can be shown that to toggle multiple bits in X, simply XOR the corresponding values of B found in the above table. Thus, any of the 2^{16} possible values of X may be obtained by combination of the corresponding values of B from the table. An example illustrates the procedure.

EXAMPLE: FOR A BLOCK OF 'N' BYTES, COMPUTE A NEW VALUE FOR THE LAST TWO BYTES SO THAT THE OVERALL CRC FOR THE BLOCK IS **1234** (HEXADECIMAL). ASSUME THE CRC FOR THE FIRST 'N-2' BYTES IS **93C5**.

SOLUTION: THE DESIRED CRC, X = 1234, WRITTEN IN BINARY IS X = 0001001000110100. Thus, BITS 2, 4, 5, 9, and 12 need to be set to '1' and all others to '0'. Forming the XOR of the five corresponding values of **B** from the table (those for X_2 , X_4 , X_5 , X_9 , and X_{12}), we have

 $\mathbf{B} = 5586 \oplus 4639 \oplus 8C72 \oplus 4628 \oplus 1102 = \mathbf{C8E7}$

From this, we solve for the data word ${\bf D}$ which produces this ${\bf B}$

$$D = C \oplus B = 93C5 \oplus C8E7 = 5B22$$

SINCE THE COS DCE CRC ALGORITHM PROCESSES A BYTE AT A TIME, DATA BYTE **5B** IS PROCESSED FIRST (AFTER THE 'N-2' BYTES, OF COURSE), FOLLOWED BY DATA BYTE **22**. THE RESULT IS X = 1234, AS DESIRED.