To: Daniel Blackman, Rick Raffanti
From: G. Murphy
Subj.: Digitizer to DCE interface

After studying the as-built digitizer schematics I would like to put down in memo form a kind of “ICD” for
the digitizer command interface. The following statements have been derived from information sent to me
by Dan, and from the schematics themselves.

1) Physical interface: There are three signals which go from the DCE to the Digitizer Y board (I'm
assuming that there is a separate 3 wire interface to the A and B segments). These signals have the
names BSTB, BCLK, and BCMD at the interface to the Y Actel in the current schematic. BSTB is
essentially an enable (enable=1), BCLK is a software generated clock (not necessarily a symmetrical
clock) that is high for 1.5 microseconds. BCMD is the serial data values (16 bits in all). I can latch the
data on EITHER the rising or falling edge of the clock—I will use the rising edge.

2) Word structure: The Data is a sixteen bit word sent MSb first. The structure is as follows

Msb Lsb
Oxxx Oyyy zzzzzz7z
Where “xxx” is the “chip select” for the DACs and Mux’s, “yyy” is the address for the chip
selected, and “zzzzzzzz” is the data value to be latched to the DAC (Non-applicable for the Mux).

3) the Y Actel will clock in the 16 bits of data and on the falling edge of BSTB that data will be latched.
On the next clock cycle (4MHz clk), the data will be presented to the DAC’s and Mux’s accordingly.

4) There are 3 DACs and 3 Mux’s. The Most Significant Nibble (MSN) will select chips according to the

following table:
Bit# 14* | Bit#13 | Bit# 12 | selected
0 0 0 DACO
0 0 1 DACI
0 1 0 DAC2
0 1 1 UNDEFINED
1 0 0 MUXO0
1 0 1 MUX1
1 1 0 MUX2
1 1 1 STIM ACTIVE

*note: Bit 15 will be ignored, it could be used to validate a command by demanding that it be zero—this

decision can be made prior to the flight chip being burned.

5) DAC#0 handles settings for the X digitizer, DAC#1 handles timing and charge thresholds, and DAC#2
handles settings for the Y digitizer. The “yyy” values select the following values depending on the
values of “xxx”

Bit# | Bit# | Bit# | DAC#0 DAC#1 | DAC#2 MUX0 MUX | MUX2

10« |9 8 1

0 0 0 X_SHIFT TTHR Y | Y _SHIFT- X_SHIFT +15 Y SHIFT

0 0 1 X _STRETCH | Q LO Y STRETCH | X STRETCH | -15 Y STRETCH
0 1 0 B WALK X | Q HI B WALK Y | B WALK X | Vcc B_WALK_Y
0 1 1 E WALK X | TTHR X | E WALK Y | E WALK X | -5 E WALK_Y
1 0 0 - - - TTHR_ Y VREF | GND

1 0 1 - - - QLO GND | GND

1 1 0 - - - Q HI GND | GND

1 1 1 - - - TTHR X GND | GND

*note: Bit 11 will be ignored, it could be used to validate a command by demanding that it be zero—this
decision can be made prior to the flight chip being burned.

6) Although it doesn’t really matter from the Actel design point of view, I will assume that operationally,
you first send a command to set a particular DAC value, then issue another command to output that
value on the Mux. Once the DAC is set, it remains set, only one mux value can be selected at a time.

