COS DCE BOOT FSW v1.13 Component Test Results
Requirement 5.5.1.2 Capability to Upload Data

<table>
<thead>
<tr>
<th>Date:</th>
<th>February 13, 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number:</td>
<td>COS-03-0062</td>
</tr>
<tr>
<td>Revision:</td>
<td>Initial Release</td>
</tr>
<tr>
<td>Contract No.:</td>
<td>NAS5-98043</td>
</tr>
<tr>
<td>CDRL No.:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Prepared By: Tim Swanson, Software Test Engineer, Design_Net Eng.

Reviewed By: K. Brownsberger, COS Sr. Software Scientist, CU/CASA

Reviewed By: Grant Blue, COS Software & Operations Manager, BATC

Approved By: Barry Welsh, FUV Detector Program Manager, UCB

Approved By: John Andrews, COS Experiment Manager, CU/CASA

Center for Astrophysics & Space Astronomy
University of Colorado
Campus Box 593
Boulder, Colorado 80309
REVISIONS

<table>
<thead>
<tr>
<th>Letter</th>
<th>ECO No.</th>
<th>Description</th>
<th>Check</th>
<th>Approved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td>Initial Release</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE UNIVERSITY OF COLORADO
At Boulder
The Center for Astrophysics and Space Astronomy

COS DCE BOOT FSW v1.13 Component Test Results
Requirement 5.5.1.2 Capability to Upload Data

<table>
<thead>
<tr>
<th>Size</th>
<th>Code Indent No.</th>
<th>Document No.</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>COS-03-0062</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Scale: N/A
Table of Contents

1. Introduction ... 2
 1.1 Purpose .. 2
 1.2 Scope ... 2
 1.3 Limitations and Constraints .. 2
 1.4 Procedure Overview .. 2

1.5 Theory of Test .. 3
1.6 Test Script Implementation ... 3
 1.6.1 Test Script Arguments ... 3
 1.6.2 Test Script Coding ... 3

2. Special Instructions ... 3
 2.1 Quality Assurance ... 3
 2.2 Safety ... 3
 2.2.1 Personal Safety .. 3
 2.2.2 Test Article and Equipment Safety ... 4
 2.3 Contamination ... 4

3. Support Requirements ... 4
 3.1 Personnel ... 4
 3.2 Tools, Equipment, and Materials .. 4
 3.3 Data/Software .. 5
 3.4 Required Documentation ... 5

4. Procedure/Task Steps .. 5
 4.1 Pre-Operation Activities .. 5
 4.1.1 Make Sure that hks Tools Are Active ... 5
 4.1.2 Make Sure that the Proper ROM Is Installed .. 5
 4.1.3 Log In to the EGSE ... 6
 4.1.4 Set Current Directory .. 6
 4.1.5 Slogin as eagcos .. 6
 4.1.6 Set Current Directory .. 6
 4.1.7 Ensure that Proper Files are Present ... 7
 4.2 Operation Execution ... 7
 4.2.1 Establish Initial Test Conditions ... 7
 4.2.2 Execute the Script .. 7
 4.3 Post-Operation Activities ... 8
 4.3.1 Copy Reports to PC Files and Print Them .. 8
 4.3.2 Complete The Test Procedure Form ... 8
1. INTRODUCTION

1.1 PURPOSE

This document presents the Cosmic Origins Spectrograph (COS) Device Control Electronics (DCE) Flight Software (FSW) certification procedure. The purpose of this procedure is to verify that the FSW satisfies Software Requirements according to the method specified in the DCE FSW Test Plan (STP).

1.2 SCOPE

This test procedure comprises the steps necessary to verify that the FSW satisfies Software Requirements Document (SRD) paragraph 5.5.1.2 — Capability to Upload Data.

1.3 LIMITATIONS AND CONSTRAINTS

This test cannot be run in parallel with any other commanding activity directed at the DCE FSW (such as, for example, the periodic transmission of NOOP commands). Test hardware shall be visually inspected, and its configuration noted, prior to conducting this test.

1.4 PROCEDURE OVERVIEW

The procedure requires the hks tools running on the Sun SparcStation Electronic Ground Support Equipment (EGSE) whose network IP address is one of:

- shorty.ssl.berkeley.edu
- taiyo.ssl.berkeley.edu
- ginger.ssl.berkeley.edu

Test time shall be scheduled in advance. The Test Conductor must be logged into the Unix system as user eagcos, and be commanding from the appropriate directory. This directory contains both the test script file and the shell script file; these two files control test execution. The test is conducted by invoking the shell script. This shell script in turn invokes the Perl 5 program UniScript.pl, which resides in its own distinct directory. The test procedure steps have been pre-recorded in the test script file, and are executed interpretively by the UniScript program. The shell script and test script are attached to this document as appendices. As UniScript executes the test script it sends results to the operator console and to two report files, which are also placed in the current directory. After completion of the test script, the Test Conductor can certify successful test
execution by examining the contents of the report files and determining that required outputs are present in them. Printed copies of the report files are attached to the manually completed checklist (Paragraph 4 below) as documentation of the test.

1.5 THEORY OF TEST

The test verifies that a block of memory can be uplinked to the DCE by using LFDUPLOD to transfer a block from the EGSE to the DCE, then using LFDDNLOD to return it to the EGSE, then comparing the transmitted with the received block.

1.6 TEST SCRIPT IMPLEMENTATION

1.6.1 Test Script Arguments

The script is parameterized as shown in the following Table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Correct Argument for Version 1.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>Absolute hex storage address of 8051 “scratch” area</td>
<td>C000</td>
</tr>
</tbody>
</table>

These parameters must be encoded into the shell script u (see Appendix A).

1.6.2 Test Script Coding

The script uses standard $u\text{niScript}$ commands and directives.

2. SPECIAL INSTRUCTIONS

2.1 QUALITY ASSURANCE

QA support is required to verify the configuration and setup environment as well as monitoring test steps and verifying results.

2.2 SAFETY

2.2.1 Personal Safety

To ensure the safety of the test personnel during test execution the guidelines contained in Paragraph 3.4 Reference [1] will be adhered to.
2.2.2 Test Article and Equipment Safety

- If access within one (1) meter of COS bench electronics is necessary, wrist straps attached to technical ground shall be used by all personnel involved in handling of any COS test article. Overcurrent and overvoltage shall be set to remove power if nominal limits are exceeded.
- Emergency Power Shutdown — If, during the COS DCE FSW test, power is ON and a severe test equipment failure results in the power system exceeding specified limits, the Test Conductor shall direct or perform shutdown of power.

2.3 CONTAMINATION

All flight hardware shall be handled with clean latex gloves; it shall be covered with clean ESD material and/or stored in a clean flow-bench.

3. SUPPORT REQUIREMENTS

3.1 PERSONNEL

Execution of the COS DCE FSW certification procedure requires the following personnel (to be completed at the Test Readiness Review (TRR):

- Test Director: ________________________________
- Test Conductor: ______________________________
- Test Technician: ______________________________
- QA: _______________________________________

3.2 TOOLS, EQUIPMENT, AND MATERIALS

The following is a list of tools, equipment, or materials required in this test. Record manufacturer and model, metrology, or property numbers of equipment used, where appropriate. Record calibration due dates where appropriate.

- Boot Mode ROM: schematic 27C256

 Engineering Ground Support Equipment (see paragraph 1.4). Indicate specific configuration:
3.3 DATA/SOFTWARE

The following files must be present:

<table>
<thead>
<tr>
<th>Table 3-1: Required Program and Data Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGSE (shorty) Directory</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>\disks\galex\users\galex\tes\uniscript\</td>
</tr>
<tr>
<td>\disks\galex\users\galex\tes\uniscript\stp5_5_1_2\</td>
</tr>
<tr>
<td>Ditto</td>
</tr>
</tbody>
</table>

In addition, the \hks tools must be active. Directions for activating \hks are given in UCB-COS-DOC-1118 (Paragraph 3.4 Reference [4]).

3.4 REQUIRED DOCUMENTATION

<table>
<thead>
<tr>
<th>Reference</th>
<th>Document Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NHB 1700.1(V1-A)</td>
<td>NASA Basic Safety Manual</td>
</tr>
<tr>
<td>2</td>
<td>COS-03-0062</td>
<td>DCE FSW Test Procedure 5.1.1.1 (this document)</td>
</tr>
<tr>
<td>3</td>
<td>UCB-COS-008</td>
<td>COS FUV Detector Software Test Plan</td>
</tr>
<tr>
<td>4</td>
<td>UCB-COS-DOC-1118</td>
<td>COS EGSE Startup Procedure</td>
</tr>
</tbody>
</table>

4. PROCEDURE/TASK STEPS

4.1 PRE-OPERATION ACTIVITIES

4.1.1 Make Sure that \hks Tools Are Active

Follow the procedure given in Paragraph 3.4 Reference [4].

4.1.2 Make Sure that the Proper ROM Is Installed
Visually verify that the ROM under test is installed: if EEPROM, in U18: if PROM, in U2 and U7.

4.1.3 Log In to the EGSE

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>C:\tes\us> telnet shorty.ssl.berkely.edu</td>
<td>Establish connection to shorty via Telnet client program</td>
</tr>
</tbody>
</table>
| 2 | | Login: xxx
Password: -------- | Using telnet window, login as user tcs |

4.1.4 Set Current Directory

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | | tcs@shorty% cd ~galex/tcs
tcs@shorty% pwd
/disks/galex/users/galex/tcs | Change current directory as shown |

4.1.5 Slogin as eagcos

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | | tcs@shorty% slogin –l eagcos
shorty.ssl.berkeley.edu
eagcos@shorty.ssl.berkeley.edu’s password: (get from SSL personnel)
Last login: Sat Oct 7 10:41:05 2000 from auntem.ssl.berke
Sun Microsystems Inc. SunOS 5.8 Generic February 2000
You have mail.
COS EGSE software version: devel | slogin as eagcos; get password from SSL personnel |

4.1.6 Set Current Directory

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 | | eagcos:shorty% cd
/disks/galex/users/galex/tcs/uniscript/stp5_5_1_2
eagcos:shorty% pwd
/disks/galex/users/galex/tcs/uniscript/stp5_5_1_2 | Change current directory as shown |
4.1.7 Ensure that Proper Files are Present

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>eagcos@shorty% ls -l</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-rw-r--r-- 1 tcs eag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stp5_5_1_2.tst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-rw-r--r-- 1 tcs eag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1398 Oct 8 18:03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62 Oct 9 17:44 u</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List files; the .tst file and the shell script u should be present</td>
<td></td>
</tr>
</tbody>
</table>

4.2 OPERATION EXECUTION

4.2.1 Establish Initial Test Conditions

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>eagcos:shorty% set path=($path ~dbb/scripts/bin)</td>
<td>Set path as shown to enable access to hks tools</td>
</tr>
</tbody>
</table>

4.2.2 Execute the Script

<table>
<thead>
<tr>
<th>Step</th>
<th>QA</th>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>sh u</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$pstring=C000,0,0,0,0,0,0,0,0,0,0,0</td>
<td>Shell to u. You should see the accompanying output as UniScript executes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parameters are: Script File: stp5_5_1_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#0: C000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#4: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#5: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#6: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#7: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>/disks/galex/users/galex/tcs/ver_1_13/stp5_5_1_2/stp5_5_1_2.rp1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>successfully opened.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report file</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>/disks/galex/users/galex/tcs/ver_1_13/stp5_5_1_2</td>
<td></td>
</tr>
</tbody>
</table>
COS DCE BOOT FSW v1.13 Component Test Results

Requirement 5.5.1.2 Capability to Upload Data

Step QA

<table>
<thead>
<tr>
<th>Operator Entry/System Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stp5_5_1_2.rp2 successfully opened. Script file</td>
<td></td>
</tr>
<tr>
<td>/disks/galex/users/galex/tcs/ver_1_13/stp5_5_1_2/stp5_5_1_2.tst successfully opened at level 0.</td>
<td></td>
</tr>
<tr>
<td>"Sending two PORs with WAITs" "Generating 256 bytes of random data and uploading it"</td>
<td></td>
</tr>
<tr>
<td>LFDUPLod SCRATCH,NBYTES,CRC1</td>
<td></td>
</tr>
<tr>
<td>"Downloading the uploaded data"</td>
<td></td>
</tr>
<tr>
<td>LFDDNLOD SCRATCH,NBYTES</td>
<td></td>
</tr>
<tr>
<td>WAIT 0: HKV0=2; HKV1=1; wc=2</td>
<td></td>
</tr>
<tr>
<td>WAIT 1: HKV1=1; wc=1</td>
<td></td>
</tr>
<tr>
<td>WAIT 1: HKV1=2; wc=0</td>
<td></td>
</tr>
<tr>
<td>"Comparing uploaded with downloaded data" "Test 5.5.1.2 completed successfully"</td>
<td></td>
</tr>
<tr>
<td>eagcos:shorty%</td>
<td></td>
</tr>
</tbody>
</table>

4.3 POST-OPERATION ACTIVITIES

4.3.1 Copy Reports to PC Files and Print Them

Using an FTP client, copy the u, stp5_5_1_2.tst, stp5_5_1_2_rp1, and stp5_5_1_2_rp2 files to appropriate PC files. Include these files as Appendices A, B, C, and D with this completed form.

4.3.2 Complete The Test Procedure Form

Ensure that all blank fields in this report are completed correctly and submit the completed report to QA.
SUMMARY SHEET

OPERATION TITLE: ___________________________ WOA# __________

TEST ARTICLES IDENTIFICATION (including serial and/or part numbers):
__

TASKS/STEPS COMPLETED: __
__

LOCATION: ___

TEST STARTED: TEST TERMINATED

TIME: ________ Hr/Min TIME: ________ Hr/Min

DATE: ________ DATE: ________

LOGS USED: __

ANOMALY REPORTS GENERATED: ___
__

COMMENTS: ___
__
__
__
__

TEST CONDUCTOR: ___

Signature/Date

QA REPRESENTATIVE: __

Signature/Date
Appendix A. Shell Script u

#!/bin/sh
pkill cosnoopy
perl ./UniScript.pl stp5_5_1_2 "C000,0,0,0,0,0,0,0,0"
cosnoopy&
Appendix B. Test Script stp5_5_1_2.tst

```plaintext
; *********************************************************************************
; * STP 5.5.1.2 -- Capability to Upload Data                                     *
; * ----------------------------------------------------------------------------- *
; * Verify that a block of memory can be uplinked to the DCE by using LFDUPLOD to *
; * transfer a block from the EGSE to the DCE, then using LFDDNLOD to return it  *
; * to the EGSE, then comparing the transmitted with the received blocks.        *
; *********************************************************************************
;
; *********************************************************************************
; * Parameters: #0 = scratch area = C000 *                                         *
; *********************************************************************************
;
SYM SCRATCH=0x#0
SYM NBYTES =256

DTG 3,"(0) Sending two PORs with WAITS"
WTO "Sending two PORs with WAITS"
;
POR WAIT 1
POR WAIT 1
;
DTG 3,"(1) Generating 256 bytes of random data and uploading it"              
WTO "Generating 256 bytes of random data and uploading it"
;
DATA 2,0,NBYTES,RAND=56
LOG 1,1,2
XMIT 2,NBYTES
LFDUPLOD SCRATCH,NBYTES,CRC1
WAIT 1
;
DTG 3,"(2) Downloading the uploaded data"
WTO "Downloading the uploaded data"
;
LFDDNLOD SCRATCH,NBYTES
WAIT 2
RECV 1,0,NBYTES
WAIT 2,HK
LOG 1,LFDDIAGS,1,2
;
DTG 3,"(3) Comparing uploaded with downloaded data"                            
WTO "Comparing uploaded with downloaded data"
;
CHECK 1,($B1 eq $B2)
;
DTG 3,"(4) Test 5.5.1.2 completed successfully"
WTO "Test 5.5.1.2 completed successfully"
```
Appendix C. Test Report stp5_5_1_2.rp1

Ver 01.13 Wed Jan 17 16:11:44 2001 "(0) Sending two PORs with WAITs"
Ver 01.13 Wed Jan 17 16:11:47 2001 "(1) Generating 256 bytes of random data and uploading it"
Ver 01.13 Wed Jan 17 18:11:49 2001 "(2) Downloading the uploaded data"
Ver 01.13 Wed Jan 17 18:11:53 2001 "(3) Comparing uploaded with downloaded data"
Ver 01.13 Wed Jan 17 18:11:53 2001 "(4) Test 5.5.1.2 completed successfully"
Appendix D. Test Report stp5_5_1_2.rp2

222

Ver 01.13 Wed Jan 17 18:11:44 2001 "(0) Sending two PORs with WAITs"
Ver 01.13 Wed Jan 17 18:11:47 2001 "(1) Generating 256 bytes of random data and uploading it"
Ver 01.13 Wed Jan 17 18:11:49 2001 "(2) Downloading the uploaded data"
Ver 01.13 Wed Jan 17 18:11:53 2001 "(3) Comparing uploaded with downloaded data"
Ver 01.13 Wed Jan 17 18:11:53 2001 "(4) Test 5.5.1.2 completed successfully"